OLS estimate of \(\beta\): \(\hat\beta = argmin_{\beta}||Y - X\beta||^2\)
\(\beta\) satisfies the normal equation: \(X'Y = X'X\hat\beta\).
If \(X'X\) is non-singular matrix, \(\hat\beta = (X'X)^{-1}X'Y\)
\(L(\beta, \sigma) =(2\pi\sigma^2)^{-n/2}exp\{-\frac{||Y - X\beta||^2}{2\sigma^2}\}\)
Residual \(\hat\epsilon = Y - X\hat\beta\)
Variance of Residual: \(\sigma^2(I-H)\)
Projection matrix H: \(H = X(X'X)^{-1}X'\)
\(\hat{Y} = HY\)
The standardized residuals can be used to check the normality assumption, goodness-of-fit, and homoscedasticity.
F-test
Nested Model
Under \(H_0\) \(RSS_0 = ||Y - X\hat\beta_0||^2\)
Under the full model, \(RSS = ||Y - X\beta||^2\)
\(F = \frac{(RSS_0 - RSS)/q}{RSS/(n-p)}\) ~ \(F_{q,n-p}\)
Likelihood ratio test
\(\lambda = 2\{logL(\hat\beta, \hat\sigma) - logL(\hat\beta_0, \hat\sigma_0)\} = nlog(RSS_0/RSS)\)
\(\lambda\) tends to a \(\chi^2\) distribution when \(n \rightarrow \infty\)